The Value of a Measurement is in the Application of its Result

Applied Metrology 101

Mark C. Malburg, Ph.D. Digital Metrology Solutions, Inc.

Metrology

Metrology (met' rol u jee) n. 1 The science or study of measurement.

Applied Metrology:

Making measurement useful.

Applied Metrology 101

- The pursuit of knowledge.
 - The goal.
- Question everything.
 - The measurand.
- The investigation.
 - The measurement
- The implications.
 - The application and uncertainty.

The Pursuit of Knowledge

"To measure is to know."

- Lord Kelvin (1824-1907)

First and Foremost:

What is your reason for measuring?

Question Everything

- What do you want to know about your process or product?
- Defining the <u>measurand</u>:
 - Be specific.
 - Do you require an answer that is numerical, graphical or both?
 - To what degree do you need to know this?
 - Be practical here, there are tradeoffs!!!

- Be specific
 - The better that you can define a functional measurand the more useful the results will be.
 - Example:
 - Honing Stroke adjustment.

- This isn't necessarily "Cylindricity"!!!
 - Cylindricity also incorporates "Roundness" and "Centerline Deviations".
 - This is a linear/parabolic variation in diameter!!!

- Be very careful concerning <u>language!</u>
 - Often, instrument manufacturers will define their own terms:
 - Parallelism
 - Taper
 - Diameter Variation

- Given a very specific definition (and defined conventions) a numerical results may be adequate.
 - Positive/Negative Taper
 - Based on linear regression

- Positive Negative Hourglass
 - Based on parabolic regression

The Investigation

- Upon defining the measurand, we need to select the right equipment and make the measurement.
 - This is analogous to the detective pulling out his kit and dusting for fingerprints.

"Surface finish is the fingerprint of the manufacturing process"

David Whitehouse

The Measurement

- At some point you are going to have to make the commitment and acquire a result.
 - Up to this point, things have been rather theoretical.
- Measurement is based on a <u>system</u> or <u>process</u>, not just a gage.
 - The result is from the system!!!

The Measurement

- The Measurement System
 - Gage (and the condition thereof)
 - Attributes: tip radius, data points, math, etc.
 - Calibration/Traceability (or the lack thereof)
 - Operator (skill level)
 - Procedures (and the following thereof)
 - Environment
 - Temperature, cleanliness, vibration, etc.
 - Workpiece
 - Temperature, Cleanliness, fixturing, etc.

The Measurement

- The measurement system provides some numerical/graphical result.
 - Does the result have the necessary "traceability" information
 - Operator, Date, Time, Calibration Info, <u>units</u>, Part/Serial Numbers, etc.
 - Results should be able to "Stand Alone".
 - Does the Mars Climate Orbiter ring any bells!?!
 - This isn't rocket science!

The Implications

Commonly heard:

"If the results aren't what I wanted...
...it must be the gage's fault!"

The Implications

- Measurement results have some inherent uncertainty.
 - The measured result is only an estimate of the "true" or "correct" value.
- Uncertainty:

"How far from the truth can my result be."

- Traditionally, we dealt with "accuracy" and "repeatability".
 - Accuracy:
 Are we targeted?
 - Repeatability:Do we get the same value again & again

• "Uncertainty" encompasses these ideas in a more comprehensive manner.

 Many are intimidated by the concept of uncertainty...

... it's not that difficult.

- Measurement uncertainty is trying to predict where the true value is given my measured value.
 - It relates the "measurement" to the true value of the "measurand".

• Given my result:

• Where might the true value lie? (2.12 +/- 1.3)

- Consider the Contributors (FMEA-style)
 - What are the elements of the measurement system that can make it be wrong?
 - Determine how each can affect the result and express it as a standard deviation.
 - Combine the standard deviations to get the distribution.
 - Uncertainty is typically expressed as +/- 2 standard deviations of this distribution.

- Each contributor can be approximated as normal distribution of errors
 - Even if the errors themselves are normally distributed.

 Once you have a distribution for all contributors you simply "pool" them.

Copyright 2000, Digital Metrology Solutions, Inc.

- Measurement Uncertainty is typically expressed as a "2 Standard Deviation" value.
 - The "2" is the "coverage factor"
 - (95% confidence)

The Implications (continued)

 When a measured result is reported, there must be an associated uncertainty. This dictates the <u>action</u>.

Applications:

- Determining when to adjust the process
- Pre-shipment or Receiving inspection
- Customer/Supplier Disputes
- Correlation problems

The Goal:

– Does the cross-hatch angle meet the specification (45° +/- 5°)? Should the process be adjusted?

The measurand

The included angle
 based on the
 predominant valleys
 as shown in the Figure.

- The Measurement
 - Method selection:
 - Mylar Template; visual assessment
 - Measured value was 47.5°

- The implications.
 - Need to know the uncertainty before acting on the result.

- The implications (continued)
 - Estimate the uncertainty
- Primary Contributors:
 - Printed Mylar Template:
 - Printing good to within 0.1 degrees
 - Assume triangular distribution
 - Manual Interpretation
 - Operator, lighting, etc. good to within 0.5 degrees
 - Assume uniform distribution

- Uncertainty Estimation
 - Mylar Template:

Operator

Combining the contributions

$$S_{combined} = \sqrt{S_{mylar}^2 + S_{operator}^2}$$

$$S_{combined} = \sqrt{0.041^2 + 0.289^2} = 0.292^\circ$$

Expanding the uncertainty

$$U_{95} = k \cdot s_{combined} = 2 \cdot 0.292 = 0.584^{\circ}$$

• The measured cross-hatch angle is:

Given our estimated uncertainty the true value should lie between

Reminder: The spec is 45.0° +/- 5°

Summary

- Metrology is a tool for understanding.
 - A tool is only effective if it is applied properly.
- Understand the elements of measurement
 - Goal (Question)
 - Measurand (Result to be Determined)
 - Measurement (The Process)
 - Implications (Uncertainty)