The Closing Gap Between Dimensional and Surface Metrology

Mark C. Malburg

International Dimensional Workshop 2000

Copyright 2000 - Digital Metrology Solutions, Inc.
The Closing Gap

- Instrumentation Origins
- Instrument Overlaps
- Industrial Optimizations
- Information Overload
- Improvement Opportunities
Instrumentation Origins

• “Task Specific” measurement
 – Royalty’s body parts (Cubit, span, etc.)
 – Physical Length Standard / Ruler
 – Caliper
 – Micrometer
 – Roughness Instrument
 – Form Measuring Devices
 – Coordinate Measuring Machine
Instrumentation Origins

• Historically, instruments were generally developed based on a specific need.
 – e.g. “Large-Scale Length”

• More recently, instruments have become more “general purpose”.
 – e.g. “size”, “orientation, “form” over a range of scales.
Instrumentation Origins

Summary

- Historically, instruments have been developed based on “the technological needs of the time”.

Copyright 2000 - Digital Metrology Solutions, Inc.
Instrument Overlaps

• The capabilities of these “general purpose” instruments have continued to evolve.
 – Improved accuracies
 – Improved data densities
 – Increased feature sets
 – Incorporation of alternative sensing mechanisms.
Instrument Overlaps

- Historical instrument bandwidth “boundaries”

<table>
<thead>
<tr>
<th>Micro-burrs & Torn Material</th>
<th>Roughness</th>
<th>Straightness</th>
<th>Dimension (Size & Position)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microscopy (Visual Assessment)</td>
<td>Sharp-Stylus (Roughness) Instruments</td>
<td>Special Purpose Instruments</td>
<td>Surface Plate (layout) Instruments & Gauges</td>
</tr>
</tbody>
</table>
Instrument Overlaps

• Current trends in instrument bandwidth “boundaries”
Instrument Overlaps

• There are many methods at the metrologist’s disposal for any given measurement.
 – Which one is best?
 – Which one is available?
 – Which one is cheapest?
 – Which one is fastest?
Instrument Overlaps

• Are different measurement approaches yielding the same results?
 – Example: Straightness

0.010
Instrument Overlaps

• Who is right?

0.010 → 3.46 µm
Instrument Overlaps

- Who is right?

0.010 1.50 µm
Instrument Overlaps

- Who is right?

| 0.010 | 1.96 µm |
Instrument Overlaps

• Who is right?

0.010 → 4.0 µm
Instrument Overlaps

• Instrument design does not dictate application.
 – CMM’s being used for scanning.
 • For example, roundness.
 – Scanning instruments being used for dimensional measurement.
 • For example, diameter.
Instrument Overlaps

- Step heights over a variety of scales.
 - Height Stand?
 - CMM?
 - AFM?
Summary:

• More recently, we have seen a dramatic increase in the push for “general purpose metrology”.
 – Driven by customers and suppliers.
• This has resulted in a significant “overlap” between technologies.
Industrial Optimizations

• Metrology has been a key element in industrial progress.

• Technology “leapfrogging”
 – Industrial needs drive metrology development.
 – Metrology development facilitates further industrial improvements.
Industrial Optimizations

• Increased demands continue to be placed on product technology.
 – Performance, safety, reliability, efficiency, cosmetics, comfort/ergonomics, etc.

• These increased demands on product technology trigger a subsequent demand on the metrology community.
Industrial Optimizations

• Shrinking Tolerances

Tanaguchi 1983; Swyt 1995
Industrial Optimizations

- Tolerancing strategies have become “scale-insensitive”.
 - Micron-level dimensional tolerancing
 - Profiles, sizes, positions, orientations, etc.
 - Problem: Separating “roughness” from “geometry” and “dimension”.
 - Large scale wavelength content.
 - “Harmonic” content, rates of change, etc.
Industrial Optimizations

• Some tolerancing strategies have become “wavelength specific”.
 – Conformable interfaces
• Sealing Applications

![Graph showing amplitude vs. wavelength with labels for Form Errors, Waviness, and Roughness.](image-url)
Industrial Optimizations

• Where do profile tolerances fit in?
 – The concept of “dimension” is often a “supporting” requirement.
 – “Scanning” and “wavelength control” are important considerations.
 – Examples of complex geometries:
 • Airfoils
 • Cam Lobes
 • Gear Teeth
Industrial Optimizations

• Increased demand for engineers
 – “During the 1996-2006 period, employment in Science and Engineering occupations is expected to increase... by about 44 percent.
 – More than three times the rate for all occupations.

NSF “Science and Engineering Indicators – 1998”
Industrial Optimizations

- The Decreasing Number of Graduate Engineers

![Graph showing the decreasing number of graduate students over time. The graph includes data from NSF/Division of Science Resources, indicating a significant decline in full-time and part-time students.]
Industrial Optimizations

- Many of the traditional customers of dimensional metrology are struggling to compete in the “internet economy”.

![Graph showing stock performance and volume](image-url)
Industrial Optimizations

• These economic trends are driving tighter financial controls.
• “Non-Value Added”* activities (such as measurement) are being heavily scrutinized.

* Don’t shoot the messenger! I’m only repeating that which I’ve heard!!!
Industrial Optimizations

Summary:

• Metrology providers and customers are facing many challenges. Including:

 – Delivery/Response
 – Technology
 – Staffing
 – Economic
“The phenomenon of information overload is in its infancy. If according to some estimates, the amount of information doubles every eighteen months, then by 2015 there will be 1,000 bits of data for every fact in existence.
Information Overload

“But we will not necessarily be better informed. Meaningful facts – those that have reliable and relevant information – will become our most valuable resource.”

- Richard Worzel

Flying with Fast Company
American Way – February 1, 2000
Information Overload

• Metrology is at the first step in the flow of “information”.
• Contrary to the beliefs of many metrologists…

We metrologists are a means to an end.
Information Overload

• With today’s computerized equipment, it has become too easy to generate enormous amounts of data.

• The question is:

 “How much of this data is relevant information?”
Information Overload

• Today’s metrology technology can produce information overload.
 – CMM example: The size of a bore

<table>
<thead>
<tr>
<th>Tolerance Ref</th>
<th>Nominal +/+/Lo Tol</th>
<th>Actual</th>
<th>Dev/Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>** 50mm hole. **</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 N0010 Diameter</td>
<td>50.000, 0.450</td>
<td>50.519</td>
<td>0.519</td>
</tr>
<tr>
<td>4 N0011 Position</td>
<td>50.630, 0.157</td>
<td>50.648</td>
<td>0.066 xy</td>
</tr>
</tbody>
</table>

HMC: 4, 4
Information Overload

- Today’s metrology technology can produce information overload.
 - Surface Metrology Example: Roughness

<table>
<thead>
<tr>
<th>Slp.</th>
<th>Ra</th>
<th>Rq</th>
<th>Rsk</th>
<th>Rt</th>
<th>Rp</th>
<th>Rv</th>
<th>Rz</th>
<th>Rpm</th>
<th>Rvm</th>
<th>RTwi</th>
<th>Vc</th>
<th>Rpq</th>
<th>Rvq</th>
<th>Rmq</th>
<th>Rk</th>
<th>Rpk</th>
<th>Rvk</th>
<th>Mr1</th>
<th>Mr2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pt</td>
<td>0.406 µm</td>
<td>0.643 µm</td>
<td>-3.105</td>
<td>10.801 µm</td>
<td>1.916 µm</td>
<td>8.885 µm</td>
<td>4.379 µm</td>
<td>1.212 µm</td>
<td>3.167 µm</td>
<td>47.1 %</td>
<td>-3.0</td>
<td>0.371 µm</td>
<td>1.745 µm</td>
<td>89.3 %</td>
<td>0.963 µm</td>
<td>0.367 µm</td>
<td>1.369 µm</td>
<td>8.7 %</td>
<td>84.3 %</td>
</tr>
<tr>
<td>Pp</td>
<td>1.914 µm</td>
<td>9.200 µm</td>
<td>0.424 µm</td>
<td>1.065 µm</td>
<td>0.363 µm</td>
<td>0.702 µm</td>
<td>0.152 µm</td>
<td>0.0000 °</td>
</tr>
</tbody>
</table>

Copyright 2000 - Digital Metrology Solutions, Inc.
Information Overload

Summary:

• We are providers of information.
 – Not just data.

• It is too easy to produce enormous amounts of irrelevant data.
 – Relevance is in the eyes of the customer.
Improvement Opportunities

This is the tough part!
Improvement Opportunities

• Continue to develop “customizable” metrology technology.
 – Purchasing advantages.
 • General purpose base hardware.
 – Personnel advantages.
 • Task-specific configuration (ease of use).
 – Technology advantages.
 • Customization to fit technology needs.
Improvement Opportunities

- Train, Educate, Teach, Instruct, Mentor, Tutor, Coach, School, Inform, Guide
 - Today’s engineering community is becoming more **aware** of metrology, but very few **understand** metrology.
 - Metrology doesn’t sell and apply itself. It requires educated customers.
Improvement Opportunities

• Strive to provide “information” rather than just “data”.

• Consider the questions behind the measurement:
 – Is this part in tolerance?
 – How well with this part perform?
 – What do I need to change in the process?
Improvement Opportunities

• The questions behind the measurement
 – Functional simulation
 • Finite elements
 • Fluid mechanics
 • Tribology
 – Process control
 • Graphical presentations
 • Data output / controller interaction
 • Artificial Intelligence based diagnostics
Improvement Opportunities

• Continue to emphasize the importance of measurement uncertainty.
 – Common statement in industry:

 “My parts can’t be bad – it must be the gage.”
Improvement Opportunities

• *Uncertainty* doesn’t necessarily mean that you are wrong.

 It means that you are smart enough to know your limits!!!
Improvement Opportunities

- A common language for specification and metrology independent of the type of measurement.
 - Addressing the overlap in measurement technologies.
Finally...

- We need to continue to interact (openly) in forums such as this!
 - We must recognize a balance between competition and collaboration.
 - Competition brings advancement and innovation.
 - Collaboration benefits the field of metrology (and customers thereof) as a whole.