Apples and Oranges:

Why Dimensional Measurements Don’t Agree

Mark C. Malburg, Ph.D.

Digital Metrology Solutions, Inc.

www.digitalmetrology.com
Have you ever measured anything that somebody else has already measured or will be measuring?
The world in which we live...

• Specifications
• Instruments
• Locations
Specifications

- The good old days...

Surface Texture // Shape // Size/Orientation

increasing scale
• Things are getting messy…

shrinking tolerances

Surface Texture Shape Size/Orientation

increasing scale
Instruments

• The good old days…
• Things are getting messy…

<table>
<thead>
<tr>
<th>Microburrs & Torn Material</th>
<th>Roughness</th>
<th>Waviness</th>
<th>Form Errors</th>
<th>Dimension (Size & Position)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microscopy (Visual & Digital Assessment)</td>
<td>Roundness & Cylindricity Instruments</td>
<td>SharpStylus (Surface Texture) Instruments</td>
<td>Coordinate Measuring Machines (CMM's)</td>
<td></td>
</tr>
</tbody>
</table>
• Things are getting messy…

— 0.010 —
• Globalization
 - Car (5,000 components, domestic% = ?)
 - Expanding Markets (global assembly)
Ideally…

Measurements should adequately agree:
 between **locations**,
 between **operators**,
 and between **devices**.

Unfortunately, they don’t…
So where do we begin?
The Myth of Repeatability
The Myth of Repeatability

- Repeatability and Reproducibility
 % R&R < 10%
 Gage System is OK
The Myth of Repeatability

- A dead measurement system has perfect repeatability!
 - And it can’t be “adjusted” into correlation.
Beginning to understand…

Specification is a “language”.
Beginning to understand…

• Unfortunately things get lost in translation.
A couple of examples...
Example: Connecting Rod
The connecting rod “language”

Bend

Twist
Bend & Twist

- The “gauge” interpretation

“Bend-ometer”
Bend & Twist

- The “gauge” interpretation

- The “scanning” interpretation
Bend & Twist

- When “things go wrong” different interpretations can give wildly different results.

Apparent “Bend” with fixed gauging
Example: Shaft leakage

- A “spiral” surface texture pattern can act like a pump.
 - To control this, a maximum “lead angle” is specified.
Lead Angle Assessment

- “String test”
- “Surface texture”
Unfortunately…

- Even in cases where the “language” is understood problems still arise.
The Problem Pareto

- Stupidity
- 3rd Shift
- Environment
- Calibration
- Definition
- Dynamics
The Problem Pareto

• “Stupidity” Errors
The Problem Pareto

• “Stupidity” Errors
 – Wrong Part Program
 – Wrong Units
 • Mars Explorer
 – Typos
 • Applying calibration
 • Data transfer
The Problem Pareto

- “3rd Shift” Errors
The Problem Pareto

- “3rd Shift” Errors
 - Must have happened before I got here.
 - Broken/Bent Stylus
 - Crashed probe
The Problem Pareto

- Calibration Errors
The Problem Pareto

- Calibration Errors
 - Adjustment?
 - Validation?
The Problem Pareto

• Environment
The Problem Pareto

- Definition Errors
The Problem Pareto

- Dynamics
Errors cost money!

Relative Error Magnitude

- Stupidity
- 3rd Shift
- Environment
- Calibration
- Definition
- Dynamics

Time & Money spent diagnosing and fixing
A Closer Look at “Dynamics”

Since nobody likes to talk about it.
Contrary to popular belief…

The world is not round.
An “out of round world”…

- Perfect geometry is a bad assumption when dealing with the “last 10%”.

“Bend-ometer”
An “out of round world”…

- Dimensional measurements must accommodate imperfect geometry.
 - Specification implications
 - Instrumentation implications
Specification

- How do you deal with bumpy surfaces?
 - Size?
 - Orientation?
Specifying

• Conventional Wisdom
Brake Rotors

- Flatness ~2-5 µm
- Peak-to-Valley Roughness ~10-15 µm
Cylinder Bores

- Line element straightness: 1-3 µm
- Peak to Valley Roughness: 4-8 µm
Wavelength Based Specification
Wavelength Based Specification

Digital Metrology Solutions

Why Dimensional Measurements Don't Agree

Copyright 2007
Digital Metrology Solutions, Inc.
Can we see the same surface?

(between instruments)
Understanding your instrument

- Surface Texture Instrument Overlaps
Understanding your instrument

- Surface Texture Instrument Overlaps
Understanding your instrument

• “Dynamic” calibrations
A better dynamic assessment…

- Microphones…

![Graph of Shure SM58 microphone frequency response](image)
A better dynamic assessment...

- A “chirp” waveform.
“Chirp-based” comparisons...

- The “chirp” waveform
 - Current tool geometry causes deterioration of amplitude.
“Chirp-based” comparisons...

- Tip radius implications
 - 5 µm tip radius

![Measured Chirp Waveform (5 µm tip radius)](image-url)
“Chirp-based” comparisons...

- Tip radius implications
 - 0.5 mm tip radius
“Chirp-based” comparisons...

- Tracing speed implications
 - Doubling the speed

Measured Chirp Waveform (1.0 mm/second tracing speed)
“Chirp-based” comparisons...

- Filtering implications
 - 8.0 µm long-pass filter
“Chirp-based” comparisons...

- **Stylus arm dynamics**
 - “Super small bore” stylus

![Measured Chirp Waveform (miniature probe)](image)
“Chirp-based” comparisons...

- **Optical Methods**
 - “White Light Interferometry” (shown in black)
"Chirp-based" comparisons...

- AFM
So what are we to do?

1. Realize that the world isn’t round.

2. Accommodate “shape” in specifications and measurement.

3. Understand your instrument!
Apples and Oranges:

Why Dimensional Measurements Don’t Agree